Contrast-Based Fully Automatic Segmentation of White Matter Hyperintensities: Method and Validation
نویسندگان
چکیده
White matter hyperintensities (WMH) on T2 or FLAIR sequences have been commonly observed on MR images of elderly people. They have been associated with various disorders and have been shown to be a strong risk factor for stroke and dementia. WMH studies usually required visual evaluation of WMH load or time-consuming manual delineation. This paper introduced WHASA (White matter Hyperintensities Automated Segmentation Algorithm), a new method for automatically segmenting WMH from FLAIR and T1 images in multicentre studies. Contrary to previous approaches that were based on intensities, this method relied on contrast: non linear diffusion filtering alternated with watershed segmentation to obtain piecewise constant images with increased contrast between WMH and surroundings tissues. WMH were then selected based on subject dependant automatically computed threshold and anatomical information. WHASA was evaluated on 67 patients from two studies, acquired on six different MRI scanners and displaying a wide range of lesion load. Accuracy of the segmentation was assessed through volume and spatial agreement measures with respect to manual segmentation; an intraclass correlation coefficient (ICC) of 0.96 and a mean similarity index (SI) of 0.72 were obtained. WHASA was compared to four other approaches: Freesurfer and a thresholding approach as unsupervised methods; k-nearest neighbours (kNN) and support vector machines (SVM) as supervised ones. For these latter, influence of the training set was also investigated. WHASA clearly outperformed both unsupervised methods, while performing at least as good as supervised approaches (ICC range: 0.87-0.91 for kNN; 0.89-0.94 for SVM. Mean SI: 0.63-0.71 for kNN, 0.67-0.72 for SVM), and did not need any training set.
منابع مشابه
Automatic segmentation of cerebral white matter hyperintensities using only 3D FLAIR images.
Magnetic Resonance (MR) white matter hyperintensities have been shown to predict an increased risk of developing cognitive decline. However, their actual role in the conversion to dementia is still not fully understood. Automatic segmentation methods can help in the screening and monitoring of Mild Cognitive Impairment patients who take part in large population-based studies. Most existing segm...
متن کاملAutomatic segmentation of neonatal images using convex optimization and coupled level sets
Accurate segmentation of neonatal brain MR images remains challenging mainly due to their poor spatial resolution, inverted contrast between white matter and gray matter, and high intensity inhomogeneity. Most existing methods for neonatal brain segmentation are atlas-based and voxel-wise. Although active contour/surface models with geometric information constraint have been successfully applie...
متن کاملDeeply Supervised Multi-Scale Fully Convolutional Networks for Segmentation of White Matter Hyperintensities
We present a method to address the challenging problem of segmentation of White Matter Hyperintensities (WMH) from multimodality MR images (T1 and FLAIR). Our method is based on deeply supervised multi-scale fully convolutional networks (FCNs), that are executed in two sequential stages and can directly map a whole volumetric data to its volume-wise labels. In order to alleviate the potential g...
متن کاملWhite Matter Hyperintensities Segmentation in a Few Seconds Using Fully Convolutional Network and Transfer Learning
In this paper, we propose a fast automatic method that segments white matter hyperintensities (WMH) in 3D brain MR images, using a fully convolutional network (FCN) and transfer learning. This FCN is the Visual Geometry Group neural network (VGG for short) pre-trained on ImageNet for natural image classification, and fine tuned with the training dataset of the MICCAI WMH Challenge. We consider ...
متن کاملValidation of Automated White Matter Hyperintensity Segmentation
Introduction. White matter hyperintensities (WMHs) are a common finding on MRI scans of older people and are associated with vascular disease. We compared 3 methods for automatically segmenting WMHs from MRI scans. Method. An operator manually segmented WMHs on MRI images from a 3T scanner. The scans were also segmented in a fully automated fashion by three different programmes. The voxel overl...
متن کامل